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• STABILIZING CLIMATE MEANS ZERO EMISSIONS

• ZERO CARBON ON-DEMAND POWER SOURCES WILL BE 
NEEDED

• FAILURE TO DEPLOY THEM COULD LEAD US TO 
DECARBONIZATION “DEAD ENDS”

• WE NEED TO TAKE ACTION TODAY TO CREATE BETTER, 
CHEAPER ON-DEMAND OPTIONS
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Paris targets mean zero emissions
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1.5-2 
degree 
pathway

Fuss et al from IPCC AR5 (2014)
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Need to do this in face of rising energy demand, 
despite efficiency gains

4BP Energy Outlook 2016
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Grid electricity comprises a growing share

5
BP Energy Outlook 2016
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“No single mitigation option in 
the energy supply sector will 
be sufficient. Achieving deep 
cuts [in emissions] will require 
more intensive use of low-GHG 
technologies such as 
renewable energy, nuclear 
energy, and CCS.”

-- IPCC, Assessment Report 5, 
Mitigation (2014)
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Can weather-dependent 
renewables do it all?
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Conclusions from multiple studies

• High VRE systems are technically feasible but require significant 
dispatchable back-up capacity.

• This will add substantially  to cost of decarbonization.
• Low cost storage, transmission and demand response do not 

FUNDAMENTALLY change the conclusion.
• This is due to large weekly and seasonal variation in VRE.  
• High VRE systems have very big footprints, which may not be 

buildable or acceptable.
• Zero carbon baseload and dispatchable capacity (e.g. nuclear, 

decarbonized fossil) will likely be essential to deep carbon 
reductions. 
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Germany case study

• Current German Policy
– 80 GHG reduction below 

1990 by 2050

– 80 percent renewable 
electricity by 2050

– 2050 electricity demand 
25 percent below 2008

– Accelerated nuclear 
phase-out by 2022

1
1
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Modeled results: Jan. 2050
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Modeled	results:	Jan.	2050	
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Modeled	results:	Oct.	2050	
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High VRE requires ~ same amount of non-VRE 
capacity as in low VRE case with nuclear 
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235 
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Peak demand
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ELON MUSK SLIDE
Does storage 
solve the 
problem?
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Not really…..
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BUT DOES NOT SOLVE MULTI-
WEEK AND SEASONAL
VARIATION

STORAGE CAN HELP ADDRESS 
DAILY FLUCTUATIONS
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Equivalent to:

1.1 billion Tesla 
Powerwalls
(29 per capita) $7 
trillion at current 
prices)

>200 of the largest 
pumped storage
plants in the US
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Transmission doesn’t solve the problem

Simulated daily wind capacity factors across 
EU (May 2030)
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“Demand response”

• Can substantial loads (e.g. industrial processes, heating 
and cooling, EV charging) be deferred over weeks or 
months?

• Will major industrial capital investments be made to 
operate only at low capacity factor (i.e. at times when 
wind and sun surpluses are available)?

22
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PJM DR 2009-2015
• Average annual total hours curtailed = 14 hours

• Average curtailment 4 X per year

• Average duration = 3.5 hours

• Average curtailment = 1% of peak

• How much far we extrapolate this to more hours, 
multi-day and week-long episodes?

23
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Other analyses: UN DEEP DECARBONIZATION 
OF US
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4.)Results:)High)Level)Summary)
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4.4. Cost))

Incremental!energy!system!costs—incremental!capital!costs!plus!net!energy!costs—exhibit!a!broad!

range!in!2050,!reflecting!the!significant!uncertainty!in!technology!costs!and!fossil!fuel!prices!over!such!a!

long!timeframe.!Under!base!assumptions!of!technology!costs!and!fossil!fuel!prices,!the!median!value!of!

incremental!costs!ranges!from!$160!billion!(2012!$)!to!$650!billion!across!scenarios,!with!the!difference!

driven!primarily!by!the!relative!quantities!and!prices!of!residual!natural!gas!and!petroleum!fuels!

remaining!in!the!energy!system!in!2050.8!The!average!median!value!across!cases!is!just!over!$300!billion.!!

Based!on!an!uncertainty!analysis!of!key!cost!parameters,!the!interquartile!range!of!incremental!energy!

system!costs!extends!from!negative!$250!billion!to!$1!trillion!across!all!cases!(Figure!12).!To!put!these!

numbers!in!context,!the!activity!drivers!in!PATHWAYS!that!drive!energy!service!demand!in!all!of!the!

cases!are!consistent!with!a!U.S.!GDP!that!grows!by!a!real!annual!average!rate!of!just!over!2%!per!year!

over!the!next!four!decades,!to!around!$40!trillion!in!2050.!The!average!75th!percentile!estimate!of!net!

incremental!energy!system!costs!($730!billion)!across!cases!is!equivalent!to!1.8%!of!this!GDP!level.!The!

average!25th!percentile!value!is!negative!$90!billion.!

Figure)12.)Incremental)Energy)System)Costs)in)2050)

!
!

Note:!The!error!bars!in!the!figure!show!the!25
th
!and!75

th
!percentile!values.!

! !

!

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

8!Petroleum!fuel!prices!are!significantly!more!expensive!than!natural!gas!by!2050!in!the!AEO!2013!Reference!Case.!
Thus,!scenarios!in!which!more!petroleum!fuels!are!displaced!are!lower!net!cost.!!
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. Even acknowledging the possible contribution of DSM, 
interconnectors and storage to  firming up weather 
dependent renewables, a deep decarbonisation of the grid 
will need a significant penetration of zero carbon  firm 

capacity. 
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• 1,670 offshore wind farms the size of Cape Wind (72 per coastal state) 
AND

• 2,400 Tehachapi-size wind farms onshore (or about 50 per state) AND
• 27,000 megawatts of wave machines (zero exist today) AND
• 227 Gigawatts of concentrated solar plants (or 580 Ivanpah-sized plants 

at 392 ME each, or 10 plus per state) to produce energy, and an 
additional 136 GW (7 per state) just for storage AND

• 2,300 GW of central solar PV plant, or 1,200 times more central PV 
capacity than exists today AND

• Additional 469 GW of solar thermal storage, or roughly 1.5 times the 
capacity of US coal AND

• 68% of all energy loads are made flexible by being coupled to thermal 
energy storage, mostly underground thermal energy storage -- enough 
storage to store 1.5-2 months of today's electricity consumption with 
capacity equal to 1 TW, or all of the US grid.
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CAN THIS ALL BE TECHNICALLY ACCOMPLISHED?

PROBABLY

DO WE WANT TO BET THE PLANET THAT IT WILL BE?

PROBABLY NOT
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Policies for zero carbon capacity

#1 Aggressive RD and D and early deployment 
policies to move forward cost and improve 
performance and innovation:

• Dispatchable renewables/storage

• CCS

• Advanced nuclear
30
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NETPower High Efficiency Power Cycle With Carbon 
Separation

Technology

• NET Power broke ground on a 50 MW Texas 
demonstration plant in March. 

• Its gas power technology produces pure, ready for storage 
CO2. 

• If successful, Net Power gas plants with CCS would cost 
the same as uncontrolled NGCCs.

• Demonstration plant  results available in 24 months.

• If successful, commercial NET Power projects could arrive 
in 2020-2025. 

• Potentially applicable to coal

31
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#2 Zero carbon capacity procurement incentives
• Long run zero carbon capacity market auctions?
• Incentives for procurement of long-run firm zero 

carbon energy?
• In generation-regulated jurisdictions, resource 

procurement adders for capacity and dispatchability
value?

• Special set aside procurements of zero carbon capacity, 
similar to California’s solicitation of energy storage? 
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#3 Making clean energy policies technology-
neutral. Policies to consider would include:

• Allowing nuclear and CCS to participate in 
state clean energy or RPS programs

• Technology-neutral federal tax incentives 
such as the ITC and PTC.
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www.zerocarbongrid.org


